目的 优化卡拉胶-白及多糖植物软胶囊的处方,得到一种新型的植物软胶囊胶皮。方法 采用白及多糖,卡拉胶等为主要原料,以抗拉强度和崩解时间为双考察指标,在单因素实验的基础上,使用响应面法对胶皮的处方进行优化。结果 卡拉胶-白及多糖软胶囊胶皮的最优处方为m卡拉胶-m白及多糖=10∶1.35,混合胶用量8.20%,羟丙基淀粉用量24.20%,甘油含量20.40%,在此条件下,所得到的胶皮拉伸强度为9.802 MPa,崩解时间为24.35 min。结论 卡拉胶-白及多糖新型植物软胶囊胶皮的性能接近明胶胶皮,可部分替代明胶胶皮,研究成果进一步丰富了植物软胶囊和白及多糖的应用途径。
Abstract
OBJECTIVE To prepare and optimize the prescription of carrageenan-Bletilla striata polysaccharide plant soft capsule and obtain a new type of plant soft capsule. METHODS The formulation of the gelatine was optimized by using response surface methodology based on single-factor experiments using Bletilla striata polysaccharide and carrageenan as the main raw materials. RESULTS The optimum conditions were as follows: m(carrageenan)-m(Bletilla striata polysaccharide)=10∶1.35, the amount of mixed gum was 8.20%, the amount of hydroxypropyl starch was 24.20%, and the amount of glycerine was 20.40%, under which the tensile strength of the obtained shell was 9.802 MPa and the disintegration time was 24.35 min. CONCLUSION The performance of the new plant soft capsule of carrageenan-Bletilla striata polysaccharide is close to that of gelatine, which can partially replace gelatine, further enriching the application pathway of plant soft capsule and Bletilla striata polysaccharide.
关键词
卡拉胶 /
白及多糖 /
软胶囊 /
响应面法
{{custom_keyword}} /
Key words
carrageenan /
Bletilla striata polysaccharide /
soft capsule /
response surface method
{{custom_keyword}} /
中图分类号:
R944
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] ZHANG H, QU Y L, WANG Y H, et al. Research on the application and stability of traditional Chinese medicine soft capsule . J China Pharm(中国药房), 2015, 26(10): 1403-1406.
[2] LI J, CHEN H Y, ZHANG W H, et al. Process optimization for preparation plant derived soft capsule shell by response surface analysis . Chin Pharm J(中国药学杂志), 2019, 54(11): 894-899.
[3] ZHANG M, MEI M, LI Y, et al. Cross-linking of gelatin capsules and its study progress of in vitro dissolution test . Chin J Mod Appl Pharm(中国现代应用药学), 2018, 35(2): 302-305.
[4] CEYLAN S, GKTüRK D, BLGEN N. Effect of crosslinking methods on the structure and biocompatibility of polyvinyl alcohol/gelatin cryogels . Biomed Mater Eng, 2016, 27(4): 327-340.
[5] YANG X X, LIN H Q, LUO J J. Advances in researches of new capsule materials for vegetable gum soft capsules . Chin J Exp Tradit Med Form(中国实验方剂学杂志), 2016, 22(13): 229-234.
[6] NIE Y, HUANG A J, HUANG R F. Carrageenan soft capsule capsule material and its preparation method: China, CN 101637610 A . 2010-02-03.
[7] TONG C, LI H R, LI Z, et al. Rheology property study of kappa carrageenan . Chin Pharm J(中国药学杂志), 2017,52(2): 130-134.
[8] LIU T T, YANG J D, CAO C Y, et al. Rheological and gelling properties of Tremella fuciformis polysaccharide and gellan gum mixtures . Food Sci(食品科学), 2019, 40(17): 72-78.
[9] LUO J J, LIN H Q, CHEN Q, et al. Formulation optimization and accelerated stability assessment of plant soft capsules . Chin J Pharm(中国医药工业杂志), 2017, 48(2): 215-220.
[10] ZHANG J Z, XIAO M T, YE J, et al. Optimization of the preparation process of the prouran-carrageena-soft capsule by response surface method . Sci Technol Food Ind(食品工业科技), 2018, 39(7): 162-167.
[11] ZENG J C, HUANG Z X, WU X C, et al. Advances in researches of non-gelatin soft capsule shell compositions . Mod Food Sci Technol(现代食品科技), 2012, 28(9): 1266-1271.
[12] ZHENG D, XU J C, GAO X, et al. Optimization of preparation of carrageenan-locust bean gum soft capsule rubber based on response surface methodology . Sci Technol Food Ind(食品工业科技), 2016, 37(14): 238-243.
[13] SHELLEY R, STROUD N, YOUNGBLOOD E, et al. Non-gelatin soft capsule system: EP, EP 2289496 A1 . 2016-08-17.
[14] FAKHARIAN M H, TAMIMI N, ABBASPOUR H, et al. Effects of κ-Carrageenan on rheological properties of dually modified sago starch: towards finding gelatin alternative for hard capsules . Carbohydr Polym, 2015, 132(6): 156-163.
[15] AI L, CHUNG Y C, LIN S Y, et al. Carrageenan polysaccharides and oligosaccharides with distinct immunomodulatory activities in murine microglia BV-2 cells . Int J Biol Macromol, 2018, 120: 633-640.
[16] ZHENG L F, ZHANG Y Y, LIU T,et al.Optimization of extraction process of total flavonoids from Yaowang Tea by response surface analysis . J Shaanxi Univ Chin Med(陕西中医药大学学报), 2019, 42(3): 51-56.
[17] HE X R, WANG X X, FANG J C, et al. Bletilla striata: Medicinal uses, phytochemistry and pharmacological activities . J Ethnopharmacol, 2017, 195: 20-38.
[18] Ch.P(2020)Vol IV(中国药典2020年版.四部) . 2020: 1088.
[19] LI G H, ZHAO Z C, JIANG M Y, et al. Response surface optimization of honokiol self-microemulsifying drug delivery system and quality evaluation . Chin Tradit Herb Drugs (中草药), 2022, 53(2): 362-371.
[20] LI J, ZHANG T T, PU D T, et al. Acetylation of Rehmannia glutinosa polysaccharides and antioxidant activity of acetylated derivatives . China J Chin Mater Med(中国中药杂志), 2022, 47(6): 1539-1545.
[21] LIU C Y, LI J, ZHOU N, et al. Optimization of synthesis of Rehmannia glutinosa libosch polysaccharide-Iron(+) byresponse surface method . Chin Pharm J(中国药学杂志), 2020, 55(20): 1703-1710.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
陕西省重点研发计划资助(2022SF-389);陕西省重点实验室基金项目资助(21JS008, 20JS034)
{{custom_fund}}